non-abelian, soluble, monomial
Aliases: C33⋊8SD16, C6.10S3≀C2, C32⋊2C8⋊2S3, (C3×C6).11D12, C33⋊5Q8⋊1C2, C3⋊Dic3.15D6, (C32×C6).16D4, C33⋊9D4.1C2, C32⋊4(C24⋊C2), C2.4(C32⋊2D12), C3⋊1(C32⋊2SD16), (C3×C32⋊2C8)⋊2C2, (C3×C3⋊Dic3).2C22, SmallGroup(432,589)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C3⋊Dic3 — C33⋊8SD16 |
C1 — C3 — C33 — C32×C6 — C3×C3⋊Dic3 — C33⋊9D4 — C33⋊8SD16 |
C33 — C32×C6 — C3×C3⋊Dic3 — C33⋊8SD16 |
Generators and relations for C33⋊8SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=eae=b, bc=cb, dbd-1=a-1, ebe=a, cd=dc, ece=c-1, ede=d3 >
Subgroups: 640 in 84 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, D6, C2×C6, SD16, C3×S3, C3⋊S3, C3×C6, C3×C6, C24, Dic6, D12, C3⋊D4, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C24⋊C2, C3×C3⋊S3, C32×C6, C32⋊2C8, D6⋊S3, C3⋊D12, C32⋊2Q8, C3×C3⋊Dic3, C3×C3⋊Dic3, C6×C3⋊S3, C32⋊2SD16, C3×C32⋊2C8, C33⋊9D4, C33⋊5Q8, C33⋊8SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, D12, C24⋊C2, S3≀C2, C32⋊2SD16, C32⋊2D12, C33⋊8SD16
Character table of C33⋊8SD16
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 36 | 2 | 4 | 4 | 8 | 8 | 18 | 36 | 2 | 4 | 4 | 8 | 8 | 36 | 36 | 18 | 18 | 18 | 18 | 36 | 36 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | -2 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ7 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ9 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ10 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ11 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ12 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | -√-2 | √-2 | √3 | -√3 | 0 | 0 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | complex lifted from C24⋊C2 |
ρ13 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | √-2 | -√-2 | √3 | -√3 | 0 | 0 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | complex lifted from C24⋊C2 |
ρ14 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | √-2 | -√-2 | -√3 | √3 | 0 | 0 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | complex lifted from C24⋊C2 |
ρ15 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | -√-2 | √-2 | -√3 | √3 | 0 | 0 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | complex lifted from C24⋊C2 |
ρ16 | 4 | 4 | -2 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | 4 | -2 | 1 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 4 | 2 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | 4 | -2 | 1 | -2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 0 | 4 | 1 | -2 | 1 | -2 | 0 | -2 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | 0 | 4 | 1 | -2 | 1 | -2 | 0 | 2 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ20 | 4 | -4 | 0 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | -4 | -1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ21 | 4 | -4 | 0 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | -4 | -1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ22 | 4 | -4 | 0 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | -4 | 2 | -1 | 2 | -1 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ23 | 4 | -4 | 0 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | -4 | 2 | -1 | 2 | -1 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ24 | 8 | -8 | 0 | -4 | -4 | 2 | 2 | -1 | 0 | 0 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 8 | 8 | 0 | -4 | -4 | 2 | 2 | -1 | 0 | 0 | -4 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊2D12 |
ρ26 | 8 | 8 | 0 | -4 | 2 | -4 | -1 | 2 | 0 | 0 | -4 | 2 | -4 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊2D12 |
ρ27 | 8 | -8 | 0 | -4 | 2 | -4 | -1 | 2 | 0 | 0 | 4 | -2 | 4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 15 21)(2 22 16)(3 23 9)(4 10 24)(5 11 17)(6 18 12)(7 19 13)(8 14 20)
(1 21 15)(2 22 16)(3 9 23)(4 10 24)(5 17 11)(6 18 12)(7 13 19)(8 14 20)
(1 21 15)(2 22 16)(3 23 9)(4 24 10)(5 17 11)(6 18 12)(7 19 13)(8 20 14)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(9 19)(10 22)(11 17)(12 20)(13 23)(14 18)(15 21)(16 24)
G:=sub<Sym(24)| (1,15,21)(2,22,16)(3,23,9)(4,10,24)(5,11,17)(6,18,12)(7,19,13)(8,14,20), (1,21,15)(2,22,16)(3,9,23)(4,10,24)(5,17,11)(6,18,12)(7,13,19)(8,14,20), (1,21,15)(2,22,16)(3,23,9)(4,24,10)(5,17,11)(6,18,12)(7,19,13)(8,20,14), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,19)(10,22)(11,17)(12,20)(13,23)(14,18)(15,21)(16,24)>;
G:=Group( (1,15,21)(2,22,16)(3,23,9)(4,10,24)(5,11,17)(6,18,12)(7,19,13)(8,14,20), (1,21,15)(2,22,16)(3,9,23)(4,10,24)(5,17,11)(6,18,12)(7,13,19)(8,14,20), (1,21,15)(2,22,16)(3,23,9)(4,24,10)(5,17,11)(6,18,12)(7,19,13)(8,20,14), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,19)(10,22)(11,17)(12,20)(13,23)(14,18)(15,21)(16,24) );
G=PermutationGroup([[(1,15,21),(2,22,16),(3,23,9),(4,10,24),(5,11,17),(6,18,12),(7,19,13),(8,14,20)], [(1,21,15),(2,22,16),(3,9,23),(4,10,24),(5,17,11),(6,18,12),(7,13,19),(8,14,20)], [(1,21,15),(2,22,16),(3,23,9),(4,24,10),(5,17,11),(6,18,12),(7,19,13),(8,20,14)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(9,19),(10,22),(11,17),(12,20),(13,23),(14,18),(15,21),(16,24)]])
G:=TransitiveGroup(24,1307);
Matrix representation of C33⋊8SD16 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 1 | 72 | 0 |
0 | 0 | 1 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 72 | 1 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 72 |
0 | 72 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
36 | 62 | 0 | 0 | 0 | 0 |
11 | 25 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,72,72,0,0,0,72,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,72,72,0,0,0,0,1,0,0,0,0,72,0,0,72],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[36,11,0,0,0,0,62,25,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1] >;
C33⋊8SD16 in GAP, Magma, Sage, TeX
C_3^3\rtimes_8{\rm SD}_{16}
% in TeX
G:=Group("C3^3:8SD16");
// GroupNames label
G:=SmallGroup(432,589);
// by ID
G=gap.SmallGroup(432,589);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,85,36,254,58,1684,1691,298,677,348,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=b,b*c=c*b,d*b*d^-1=a^-1,e*b*e=a,c*d=d*c,e*c*e=c^-1,e*d*e=d^3>;
// generators/relations
Export